Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth.

نویسندگان

  • Junghui Koo
  • Ping Yue
  • Anthony A Gal
  • Fadlo R Khuri
  • Shi-Yong Sun
چکیده

mTOR kinase inhibitors that target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here, we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacologic inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the PI3K/Akt/mTor pathway using 31P-NMR spectroscopy: routes to glycogen synthase kinase 3

Akt is an intracellular signalling pathway that serves as an essential link between cell surface receptors and cellular processes including proliferation, development and survival. The pathway has many downstream targets including glycogen synthase kinase3 which is a major regulatory kinase for cell cycle transit as well as controlling glycogen synthase activity. The Akt pathway is frequently u...

متن کامل

Interactome mapping of the phosphatidylinositol 3-kinase-mammalian target of rapamycin pathway identifies deformed epidermal autoregulatory factor-1 as a new glycogen synthase kinase-3 interactor.

The phosphatidylinositol 3-kinase-mammalian target of rapamycin (PI3K-mTOR) pathway plays pivotal roles in cell survival, growth, and proliferation downstream of growth factors. Its perturbations are associated with cancer progression, type 2 diabetes, and neurological disorders. To better understand the mechanisms of action and regulation of this pathway, we initiated a large scale yeast two-h...

متن کامل

GSK-3 modulates cellular responses to a broad spectrum of kinase inhibitors

A fundamental challenge in treating disease is identifying molecular states that affect cellular responses to drugs. Here, we focus on glycogen synthase kinase 3 (GSK-3), a key regulator for many of the hallmark behaviors of cancer cells. We alter GSK-3 activity in colon epithelial cells to test its role in modulating drug response. We find that GSK-3 activity broadly affects the cellular sensi...

متن کامل

GSK3-mediated raptor phosphorylation supports amino-acid-dependent mTORC1-directed signalling

The mammalian or mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) is a ubiquitously expressed multimeric protein kinase complex that integrates nutrient and growth factor signals for the co-ordinated regulation of cellular metabolism and cell growth. Herein, we demonstrate that suppressing the cellular activity of glycogen synthase kinase-3 (GSK3), by use of pharmacological inhibitors ...

متن کامل

PI3K/Akt/mTOR and CDK4 combined inhibition enhanced apoptosis of thyroid cancer cell lines

Introduction Thyroid cancer is a malignant disease with poor prognosis. The PI3K/Akt/mTOR and Cyclin-Dependent Kinase 4 (CDK4) pathways are vital regulators of tumor cell proliferation and survival. Therefore the present study was designed to use dual inhibition of such pathways to kill thyroid cancer cells. Methods and materials The effects of each inhibitors on human ATC and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 74 9  شماره 

صفحات  -

تاریخ انتشار 2014